
Networked: Postmodern Software Development

Robert E. Filman
RIACS/NASA Ames Center

Software development is an art. The most noteworthy computer science monograph of the 20th century
was, after all, Knuth’s The Art of Computer Programming,1 and one of the starting points for this column is
his Turing award, a discussion of art in computer science.2

Art is a word with many meanings. It originally referred to the skill of joining or fitting. (Much—too much,
for us traditionalists—of software creation these days is the art of connecting existing pieces.) The meaning
of “art” expanded to the system of principles and rules for attaining a desired end. Art stands in contrast to
science, engineering, manufacturing, and fashion. Science distills knowledge into principles and laws; art
recognizes that there are human choices in activities. Combine art with an attention to economy and we get
engineering, like the computer science holy grail of “software engineering.” Doing something following a
well-defined, low-skill plan yields manufacturing. Choosing among equivalent possibilities is fashion.
Designing a computer is an art. Designing one that people can afford is engineering. Building one from that
design is manufacturing. Picking the color for the computer case is fashion. (Art is also a synonym for
necromancy, a topic of clear relevance to computer science.)

Art also refers to the use of skill to create that which is aesthetically or intellectually pleasing. Fine arts
show an intellectual progression through the ages, shaped by new technology (for example, casting,
cameras, and computers), shifting economic forces (including the decline of the church, the rise of the
merchant class, and ultimately, the emergence of mass media with the entire population as customers for
art), new understandings (such as perspective and the physics of light and sound) and evolving response to
the previous generation’s ideas (baroque, realism, impressionism, and modernism, for example). In fine
arts, prior themes are revisited with new twists. Science and engineering show an unconditional
progression: nothing will make us return to Newtonian mechanics, view non-Euclidean geometry as heresy,
or replace integrated circuits with discrete transistors. Disciplines like education and organizational
management follow fashions—old “truths” reemerge. The Management Style of Attila the Hun and The
Management Style of Saint Francis of Assisi are equally likely to be business best sellers at some arbitrary
point in the future.

The Art of Software Development

The aesthetic metric in science is accuracy and simplicity. Art encompasses aesthetic metrics such as
beauty, intellectual progression, and quality of workmanship. Engineering includes reliability and economy
of construction. We expect our software systems to satisfy a large range of “-ilities,” including an aesthetic
of understandability; ease of construction, maintenance, and evolvability; an economy of execution;
reliability; security from attack; interoperability; and so forth. Software has a special place in the range of
artifacts, as it intimately connects the mathematical, physical, and psychological realms. Psychology’s dual
role in software systems plays out in both software creation and use.

The history of software development includes elements of art, science, engineering, and fashion (though
very little manufacturing). Such intellectual fields have eras: in the fine arts, the baroque gave way to
rococo, romanticism, modernism, postmodernism, and so forth. In software, the early emphasis on
functional development yielded to structured programming, and, over the past 20 years, the rise of
computer science’s modernism: object-oriented technology. Along the way, we’ve seen offshoots such as
functional, logic, and rule-based systems. Artistic development has been characterized first by the
improved ability to render concrete realism and, later, by attempts to express more in a work of art than the
literal interpretation of its content—conveying richer relationships and tying the work into the context of its
developer and environment.

Software development shows a similar progression. The earliest programming languages were concerned
with efficient realism: it was hard to render even highly structured problems into code. Efficient use of
machine resources was a dominant design criterion. Programming was linear: things said in the program
tended to correspond, one to one, to things that happened when the program executed. Programming was
planar: you could easily trace the potential execution paths in the program and identify which conditions
would give rise to which code being called.

As software systems became more plastic, new, more complex technologies came to dominate. Today we
have objects. Programmers are instructed to think of the elements of their domain and their implementation
as “things” with “state” and “behavior,” and to code that state and behavior. Linearity and planarity have
decreased. Inheritance allows statements asserted in distant ancestors to intrude in program execution;
dynamic object binding draws bridges over the program surface.

Postmodern Programming

In all domains, old ideas give way or evolve to new ones. What is the postmodern programming
equivalent? That is, what comes after object-orientation? Broadly, object orientation suffers from several
limitations.

All Meaning Is Wrapped Up in the Code

There are few ways to say anything about a system that aren’t about how the system executes. Comments,
Unified Modeling Language (UML) diagrams, and similar documents are, of course, exceptions. I’m not
suggesting skipping comments in code, but such elements are notoriously unreliable and nonautomatable.
On the other hand, type systems represent a first step toward annotation. By declaring something to be a
type, the programmer conveys more than just implementation. This information can be used in ways
beyond code generation. In the future, we will likely see richer uses of annotation in programming, tied not
only to program execution but also to program analysis, understanding, and tuning. Such annotations might
range from simple propositional elements to descriptions of invariants that the system ought to maintain,
including constraints about how program elements can be composed and extended.

Novel Modularizations

The great wisdom of objects was to bring together everything about something—an object’s code includes
its data, behavior, and interfaces. Unfortunately, the real world isn’t that simple. Many things we care about
with respect to code are not neatly localized into a single place in an object-oriented decomposition.
Current technologies force developers to scatter these concerns throughout a system. Programmers must
develop code that tangles such crosscutting concerns. Future programming environments might provide
mechanisms for discretely expressing crosscutting concerns while nevertheless assembling working
systems. This can be understood as an instance of the more general idea of being able to make and enforce
statements about a program’s behavior without having to tie such statements to singular or particular
decompositions.

Complex Representations

Object orientation encourages us to think of systems as discrete, weakly related atoms. On the other hand,
the real world (and real data structures) exhibit complex collections of elements. For example, the wheels
are part of a car—objects in themselves, but also maintaining a special relationship with the car and each
other. Similarly, both the world as a whole and software systems exhibit a variety of semantic collections
and masses. Additionally, real-world and software elements often need to have lifetimes beyond the
execution of a single program (persistence). Postmodern programming will have ways to express and
maintain such complex relationships and durations.

Software Doesn’t Work

My browser crashes periodically. Even the Mars Rovers, with their inherent difficulty of on-site repairs,
have software bugs. (I won’t begin to get into my experiences with a certain popular desktop operating
system.) Postmodern software systems might come to recognize that such failures are the norm, rather than
the exception, and that developers need tools for building systems that can cope with unexpected failures
rather than be surprised by them.

Conversations

Classical programming is like call-and-response music. Programming languages let us ask a question
(make a subprogram call) and get a response. Postmodern software might explore other options, including
event-based systems, conversational communication, and context-sensitive evaluations.

Adaptable Language

Early programming-language analysts put a lot of stock in language syntax, such as keyword choice for
particular operations. Modern programming-language analysis rushes to dispense with syntactic sugar to
get to operational-semantic meat. A postmodern world might find a different balance between universal,
common ways of expressing programs and notations that are specific to certain domains or to particular
programmers’ eccentricities. Matching such domain-specific syntax will be domain-specific semantics—
software languages with inherent facilities for problem domains.

New movements in the art of software are often heralded by new programming languages (for example,
object-oriented languages). When the linguistic idea takes hold, the support structure for that language
emerges (for example, object-oriented software analysis and design). In a future column, I will examine
some of the language and environment trends that are trying to overcome object limitations.

And speaking of promises, last January, I said I’d report on how the Mars Exploration Rover/Collaborative
Information Portal system worked out. I’ve postponed that reporting because, well, the darned things are
still working—even though they’re out of warranty. This issue of IC includes an article (not by me) with a
more complete description of that system and its use (“The Collaborative Information Portal and NASA’s
Mars Rover Mission,” pp. 20–26), which I figure is enough to earn dispensation from my prior promise.

References

1. D.E. Knuth, The Art of Computer Programming, Addison-Wesley, 1968.
2. D.E. Knuth, “Computer Programming as an Art,” Comm. ACM, vol. 17, no. 12, 1974, pp. 667–

673.

